




1.

Final Report

In this year's effort, research focussed on four areas.

1. Adaptive Filtering and Estimation.

Work on the theory of running FFT's continued with emphasis on problems

in adaptive filtering. Results were presented in the following paper:

"Adaptive Frequency Domain Estimators"

IEEE International Symposium on Information Theory, Grignano, Italy, 1979.

The method was applied to the problem of detecting a moving target in

the presence of strong clutter. The filtering was based not on global but

on local spectral properties of the clutter determined adaptively with thres-

hold and other techniques. Results were presented in the following paper:

"Adaptive Clutter Suppression"

Seventh DARPA Strategic Space Symposium, Naval Post Graduate School,

Monterey, California, 1980.
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29. ADAPTIVE CLUTTER SUPPRESSION

By: A. Papoulis K. Huang and Ch. Chamzas

Abstract--A method of target detection is presented based on the
determination of the local spectral properties of the background inter-
ference. In this method, the running FFT of the detector output is
evaluated recursively and the target is detected with the use of a
threshold technique that separates the significant components of the
local target and clutter spectra. In the illustrations, the motion of
the target is used to generate a high frequency response at the output
of each detector element etched with a mask that matches the point
spread of the optical system.

1. Introduction

We consider the problem of detecting a target in the presence of strong
interference. Unlike the usual methods the proposed approach is based
on the design of a filter whose parameters are not specified in advance
in terms of global statistics but are adaptively controlled in terms of
local spectra evaluated in real time.

The problem is essentially multi-dimensional (space-time). However, for
notational simplicity, we discuss only its one-dimensional form (time).
The results can, in principle, be extended to several variables.

The one-dimensional problem in its post-detection form involves the
estimation of a signal s(t), or, at ieast, the determination of the
presence of such a signal, in terms of the detector output

X(t) c(t) +s(t) +V(t) (1)

where c(t) is the detector output due to clutter, and v(t) is background
noise. The processing is carried out digitally in terms of the samples

x[nl x(nT)

of x(t). Thus, the signal processing problem is the detection of the
component s[n] of the sum

x[n] - c[n] +s[n] +v[n] (2)
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The factors affecting the selection of the sampling interval T will not be
considered.

The most common form of target detection uses a FIR filter whose output is
the weighted sum

N-1y[n] - k xfn-k] (3) ;
k-0

The coefficients of this filter are independent of n and are chosen so as
to yield a suitable frequency response

N-1
H(e J wT) . I ae jk T

k-O

A special case is the mth difference filter obtained with ak= ('). The
resulting system function is given by

H(z)=(l-z

and can be realized as a cascade of first order systems. This filter is
chosen primarily because it is simple (it requires no multiplication).
It's frequency response is a rather primitive high-pass curve

IH(ejT =2m Isin -H- i

In the target detection problem it is desirable to adapt the system char-
acteristics to the local properties of the background. This requires the
design of a time-varying filter:

N-1
y[n] - I akin] x (n-k] (4)

k=0

with adaptively controlled coefficients ak[n ]. The adaptation algorithms
involve various numerical schemes for determining local statistics but are,
in general, complex. A simple design, that can be used if the signal s[n]
to be estimated is somehow available (as a pilot, for example, or as de-
layed observation), is the Widrow filter:

ak[n] =akin-1] +.(s(n]-y[n]) x (n-k] (5)

where V is a suitable constant.
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In the above filters, the processing is performed in the time domain.
This is not optimum for the problem under consideration because the
separation between target and clutter depends on frequency domain proper-
ties. rIR filters as in (3) or (4) -an, of course, separate frequency
components but this requires proper adjustment of all their coefficients
a.k. The proposed processing involves processing directly in the frequency
domain. As we shall see, the elimination of various frequency components
is accomplished simply by eliminating the corresponding coefficients.
This reduces drastically the number of the adaptively controlled parameters.

2.' Running Spectra

The running FFT of a signal x[n] is by definition the sum

M .21r/N
X [n]; xtn-k]w we N-2M+l (6)

m k--H

Thus, Xm[n] is the mth FFT coefficient of N consecutive samples of x[n]
centered at n. The proposed adaptive frequency domain filter is a time-
varying system whose output is the sum

M
zln] = I br[in] X.[n] (7)

where the weights bm[n ] are adaptively controlled in a variety of ways de-
pending on the applications. For example, if the Widrow algorithm is used,
then bm(n] is determined as a first order recursion as in (5):

b [n] -bi[n-l] +P(s[n] -ztn]) Xm[n] (8)

It might appear that (7) is equivalent to (4), obtained merely by a linear
transformation of the data. This, however, is not so. If it is concluded,
either from prior information or from recent observations, that the fre-
quency components of the interference are concentrated in certain frequency
bands, the corresponding terms in (7) can be eliminated . This leads to
the response

M 2 (n]

zfn]-2Re I brin] X m[n] (9)
mM 1 [nm ]

where not only the coefficients bm(n] but also the cut-off frequencies
Ml[n] and M2 (n] are adaptively controlled.

I
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In the last section, we estimate the presence of s(n] in terms of the sum

SM2 [n]
z 2n] -- I Re X [n] (10)N] MIM1[]

This is a special case of (9) obtained with bm =1/N and it equals sin] if
the frequencies Hl, M2 separate completely the spectra of the signal and
the interference. The determination of M1 and M2 is accomplished with a
threshold method that is based on the determination of local clutter
averages.

The advantages of the proposed filter are obvious: Processing in the
frequency domain based not on global prior statistics but on local
averages. However, it appears that, in contrast to time-domain filtering,
the required number of arithmetic operations is large: N multiplicaticns
are required to determine Xm[n] for each m and n. We shall presently
show that this is not so. Each FFT Xm[n] can be determined recursively
with only one multiplication. Indeed, from (6) it follows that

X [n]- wmX fn-l]= xn+M] - xfn-M-1]w (11)m M ~ W -~--~

that is Xmjn] can be obtained as the output of a simple first order filter.
To realize (11) in real time, we must of course introduce a delay of M
units.

3. The Gemini Concept

Frequency domain filtering can be used in most methods of target detection
because the suppression of the interference is based on the assumption
that the clutter component c(n] of the detector output x[n] varies slowly
relative to the target component sin]. However, to be concrete, we shall
consider a special case based on the Gemini principle (Fig.l):

Each detector element is covered with a mask consisting of vertical strips
with transparency m(x) that is somehow matched to the point spread

h(x, y)h( y2)

of the optical system and its output x(t) equals the integral of the light
intensity across its surface. For simplicity, we assume that the center
of the detector is at the origin (x=0, y-0) and that the target is a
point source. The results can be readily generalized to arbitrary moving
targets. Denoting by v x, v the velocity components of the target properly
scaled, we conclude that Yits image is h(x-vxt, y-v yt). Hence, the de-
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tector output is given by the integral

s(t) if h(x-vt, y-v yt)m(x)dxdy (12)
D

where D is the region of the detector element. With

p(x) J h(x, y )dy (13)

the line-spread of the system, we obtain from (12), neglecting end-effects

s(t)= p(x-v t) m (x)dx (v t) (14)

where

(x)- p(x- ) m (C)dE (15)

Denoting by H(u,v) the MTF of the system and by P(u), t(u), and M(u), the
Fourier transforms of p(x), (x), and m(x) respectively, we obtain

P(u) = H(u, 0) , (u) - P(u) M (u) (16)

The spectrum S() of the detector output s (t) is thus given by

sMw 4(~)=i-H 0~,) MC(-) (17)
FxI x jxl Vx x

This shows that a high velocity component v in the x-direction generates
high frequencies in the component s(t) of xft) due to the target. Hence,
c(t) can be removed with frequency domain processing. The y-component of
the velocity has no effect on the spectrum of x(t).

In the next section, we illustrate the above with a numerical example in-
volving a one-dimensional mask as in Fig. 1. It might, however, be of
interest to comment briefly on the possibility of detecting targets moving
in any direction. As we show next, this can be done with masks consisting
of circles:
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m(x,y) =m(r) (18)

that are matched somehow to the point-spread h(r)

FOCAL PLANE

Y Detector element f.*

v1- - - - - - - - --- - - - "/

'Imoge ofmoving target

FIGURE 1 FOCAL PLANE IMAGE OF A MOVING TARGET.

We change the coordinates to (, n ) where E is in the direction of motion
of the target With v its velocity and no the distance from the origin to
the line of motion, the image at time t is h( -vt, n-no ) and the detector
output is the integral

s(t)- f h(.-vt, n-n 0 ) m( ,n)d~dn (19)

D

with

((x,y)- (r)= h y-n) m (,n)dd ( x+y 2 )  (20)

(19) yields

s(t)-*(vt, no) (21)

Thus, the detector output x(t) is the profile 0( ,n ) of *(r) on the

plane n no properly scaled. This curve is shown in Fig. 2 as a function
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(a) (b)

0 1

FIGURE 2 (a) CIRCULAR MASK
(b) DETECTOR OUTPUT 4 ( ,n) DUE TO A MOVING POINT SOURCE.

-of for various values of no. The point spread used is the Airy pattern

12J1 (r)

h(r) 2
r

and the mask m(r) is a succession of transparent and opaque rings with
boundaries at the zeros of J1 (r)

4. Numerical results

In this section, we illustrate the adaptive frequency domain method with
an example involving the detection of a moving target in the presence of
strong interference. The data are computer generated.

The samples of the detector output form a discrete signal x[n] as in (2).

29-7

UNCLASSIFIED



9-
UNCLASSIFIED

____________ ~~,Trget Ai'

W I n (d)

(b)
-Clutter Energy of clutter + noise

0 1000 0 n 000
(C) (e)

FIGURE 3 (a) TARGET s[n] AND SIZE OF THE RUNNING FFT.
(b) m[n] : ETCHED MASK. (c) CLUTTER c[n) AND
BACKGROUND NOISE v[n]. (d) DETECTOR'S OUTPUT x[n].
(e) ENERGY OF sin] AND c[n] +v[n], AVERAGED OVERTHE FFT SIZE.

(Fig.3) and our objective is to detect its presence. The numerical pro-
cessing follows:

We form the running FFT Xm[n] of x[n] of order

N - 101

using the first order recursion (11) and form the sum zIn] as in (10).
The cut-off frequencies Ml[n] and M2 [n] are determined adaptively. The
upper cut-off point depends on the noise component vunI, For simplicity
we choose a fixed value M2 [n] - 45, limiting the discussion to the choice
of M [n]. For this purpose, we form the intermediate average Tig. 4)

Xm (n] - i Xm[n-k] ak  a- 0.99 (22)

of Xm[n ] and we choose for Ml(n] the smallest value of M, such that
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S (Xn] I <L for M1 (n]-s<m< (n] (23)

where L is a threshold level

In figure 5a we show I m (lhl as a function of m and n, with IR MnJ[

truncated to the threshold level L. In figure 5b we showlXm[no]1 for

n- 700 and in figure 5c we plot the values of the lower cut-off point

M1 [n] as a function of n.

The resulting sum

z[n]= - 2 Re X [n)

is due primarily to the target but it contains a component e[n] (error)
due to the frequency components of c[n] and v[n] in the band (M., A2).

We next form the short term and long term averages (Fig.6)

-- n] y[n-k] a" a,=0.9
k=0

y n ) y[n-kl a2  a2=0.999
k=0 

2

2of the energy y(n] -z [n]

These sums are determined recursively:

yn]= a, y[n-l] + y [ni y[n] -a2 y[n-l1 + y[n]

Since the target is of short duration, the long-term average y[n] is due
namely to the clutter. If

y[n] > k y[n] k=3

then the target is present. (Fig.7)
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x [n)

------ Running IFm [N 101 ~ m[k]~

0 150 5

0 M1 r1 -T-10

k 0

(b) I~mfl]I(bO

(c) GNERATLONE U OFF POEINTOFDITE AVRANIG FILTER

100-0

. ... U.C.ASSIFIED
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Short -term average

ai1 -a, (toarget +error)

Long-term average

a2 a2 =0.999 I-a 2  (error)

FIGURE 6 GENERATION OF THE SHORT-TERM, y~n], AND LONG-TERM, ytn],
AVERAGES.

(a)

n
Wb

FIGURE 7 (a) zfn]: OUTPUT OFTHE ADAPTIVE FILTER
Wb COMPARISON OF yfn arnd 3y[n]
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13.

2. Bandlimited Extrapolation.

The investigation of the problems of extrapolating bandlimited signals

by iteration was completed. The method was applied to problems in Image

Enhancement, Spectral Estimation, Deconvolution, and Detection of Hidden

Periodicities among others. The latest results are shown below:

"Windows and Extrapolation"

IEEE Workshop on Spectral Estimation, Cyprus Gardens, Florida, 1980.

"Detection of Hidden Periodicities by Adaptive Extrapolation"

IEEE Tr-ASSP-27, No. 5, October 1979 pp. 492-500.

Detection of Hidden Periodicities by
Adaptive Extrapolation

ATHANASIOS PAPOULIS, FELLOW, IEEE, AND CHRISTODOULOS CHAMZAS

Abstract-A method is presented for determining the harmonic com- = 'n cie
ponents of a noisy signal by nonlinear extrapolation beyond the data f(t) =

interval. The method is based on an algorithm that adaptively reduces
the spectral components due to noise, in terms of the segment (data)

1. INTRODUCTION f(t) + n(t) ,tI<TA N important problem in many applications is the deter- w ) (r)m o t I IT
mination of the frequency components of a signal ltL>T

of f(t) containing the noise component n(t). The data are

Manuscript received November 22, 1978; revised January 25. 1979 known for ItI < T only for a variety of reasons:
and March 20, 1979. This work was supported by the Advanced Re- 1) The signal f(t) can be written as a sunm of exponentias
search Projects Agency of the Department of Defense and was moni-
tored by the Office of Naval Research under Contract N00014-76C for a limited time only (voice; nonstationary processes).

0144. This paper is in part from a Ph.D. dissertation submitted by C. 2) The available time of observation is limited (sun spots:
Chamzas to the Faculty of the Polytechnic Institute of New York. weather trends).
Farmingdale. NY.

The authors are with the Department of Electrical Engineering. 3) Measurements are limited by instrument constraints

Polytechnic Institute of New York, Farmingdale, NY 11735. (Michelson interferometer; diffraction-limited imaging).

0096-3518/79/1000-0492500.75 © 1979 IEEE
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1)5I Flw)

M -T 0 T -0 0 0, w

-T 0 T -o0 w
Fig. 1. (a) The unknown signal f(t) and its Fourier transform F(w).

(b) First iteration starting with known segment w I Mt.

I --- W 1w)

fn (t) Fn (W)

-T T t -0 O" w

-' ' r , -' I wn+,(.

Fig. 2. nth iteration.

The unkn(wn frequencies wi and coefficients ci can be or (w) orm <

determined simply with orbinary Fourier transforms if the Fo segme (5)

time of observation 2T is large compared to all the periods. t >.

T i  = 21r/ wi and their differences. T h is is no t, how ever, the W e c m u e t e i v r e ra s o m f ( ) of F ( ) , nd o mcase if T is of the order T- - Ti, particularly if the noise con-

Fi.2 theteration

ponent n(t) is not negligible. In this paper we present a
method which, as we hope to show, is reliable even if T is r" wI(t) =f(t) Ijt < T
small and the data are noisy. w 2 t) = (6)

The method involves only FFT and it is based on earlier (t) Itl>T

results dealing with the problem of extrapolating band-limited
functions [11, [21. We review (for easy reference) the relevant and its Fourier transform W2(W).
parts of these results. This completes the First Step of the iteration (Fig. 1).

nth Step: We form the function (Fig. 2)
11. EXTRAPOLATION OF BAND-LIMITED FUNCTIONS W,) 1 I<G

Consider a function f(t) with the Fourier transform F(w) Fn(W) = (7)
such that 10 I W>

F(w) = 0 Iwl > a. (3) where Wn(o) is the function obtained at the end of the pre-

We form the function ceding step and compute the inverse transform fn(t) ofFn(w).
We form .the function

lt) t<T
w t=Ilr(4) f(t) ItI<TW1()_ 0 llT() wna I(t)=tf(t) ltl>T (8)

obtained by truncating f(t) as in Fig. 1. We shall determine

f(t) in terms of w, (t) by numerical iteration. and compute its Fourier transform Wn. I(w).
First Step: We compute the Fourier transform W1 (w) of If f(t) is approximated by fn(t), the resulting mean-square

w, (t) and form the function error is given by
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E. =j [fit) - fntt)j 2 dt=i n IFtw) - f,,lw&t dw.

C,
(9) I

We maintain that this error decreases twice at each iteration o w.
step. Indeed,

E f - tFig. 3. Fourier transform of the unkno n signal.

"ir< T /Iii> T. Ir~>T

But [see (7) and (8)1 o o8a

r [(t) - f.(t)12 i [f(t) - iv,(t)j itIn.1 .~i-.,> T,_ O-J." - -
0 too 0 Oo

IF(w)- W'n. (W) 2 dw
27r Fig. 4. Truncation of W,(w) below a threshold level c. yielding F,(W).

27r., > aF that the corresponding eigenvalues are finitely many, there-
fore, they have a positive minimum (4].

+ 2 iF(w) - F. I(W)12 dw. Ill. ADAPTIVE EXTRAPOLATION

- o The preceding method was based on the assumption that
And since the last integral E,,1 [see (9)] ,we obtain the unknown function f(t) is band limited. This informa-

tion was used to reduce the error in the estimation of f(t)
f. ttwice at each iteration step. The speed of iteration can be

En -En-, [fit)-fI()] 2 dt increased and the effects of noise can be reduced if addi-
tI< 7' tional a priori information about f(t) is available. Suppose,

+i jW,(w) z dt (1)for example. that the size of the band of F(w) is known but

21r > ( its precise location is unknown. We then choose a constant

a such that F(w) vanishes outside the integral (-o. a) and
because Fiw) = 0 for IwI > a. proceed as in Section II. As the iteration progresses, the

In [11 and [21 we show that fn(t) 'f(t) as n -. o*.This is form of Wn() suggests appropriate reduction of the as-
not true if the given segment w, It) of f(t) is noisy as in (2). sumed band off(t).
In this case, a satisfactory estimate of f(t) can be found by The adaptive extrapolation method is particularly effect-ye
early termination of the iteration [21. if f(t) is a sum of exponentials as in (1). In this case. F(w)

Note: From (10) it follows that the mean-square error En  consists of impulses (lines) as in Fig. 3:
is a monoton decreasing function and since it is positive it
tends to a limit. This does not prove the convergence of (9) F(w) = 2r c((w - i). (12)
because the limit need not be zero. It shows, however, that i-

E, - E. I - 0 n and our problem is to determine their locations wi and ampli-
tudes ci in terms of the known segment w, (r) off(t).

Hence, To solve this problem, we select a constant a larger than
the largest possible value of wi and we proceed with the

[fit) - fn(t)' t d- 0 n-cc. (11) iteration until W,(w) takes significant values only in a sub-
r1< T set B,, of the band (-a. a) off(t) (Fig. 4). This suggests that

Although the functions f(t) and f,(t) are band limited, (Ii) the unknown frequencies are in B,,. When this is observed.

does not imply that f(t) -f,,(t) because there is no lower the function F,,(w) of the nth iteration step is obtained from

bound on the energy concentration of band-limited functions the following modification of(7)

in a finite interval 11). [3). For example, the prolate spheroi- [W,(w) w C B
dal functions p,(t) are band limited; their energy equals one F,,(w) =  (13)
but their energy concentration in the interval (- T, T) tends (0 W E ,,(3

to zero as n - -. This is the case because the eigenvalues (Fig. 4) where k,, is the complement of B,. The process is
A,, of the underlying integral equation tend to zero as n - -. repeated ,,,ith occasional reduction of the size of B,, as further

We mention without elaboration that, in the discrete version evidence suggests. and it terminates when w,,(t) is essentially
of the problem. the convergence of the iteration can be de- a sum of exponentials. Another application of the method
duced from (11) under suitable conditions. The reason is is discussed in [5] in the context of deconvolution.
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Discussion 2561- N.256

The adaptive extrapolation method is essentially empirical, a 0s
Although, as we see in the following examples, it works well
in a number of cases, there is no a priori certainty that in a ,m1
given problem it will converge to the unknown signal. In fact. -

if some of the components ci of f(t) are relatively small, they
might be lost. o

The accuracy and reliability of the method depends on a -10 0 10
number of parameters: total number of unknown frequencies. f (N,)
possibly prior knowledge of this number, relative sizes of am- Fig. 5. Discrete spectrum 'FmI of fn - e/( 2 1/N)ac = 0.3.N= 256).
plitudes ci and frequencies wi, noise level, length 2 T of the
data interval, and available FFT size N. A precise statement, We turn now to our main problem: the numerical deter-
even empirical, of the importance of all these factors cannot mination of the frequencies of an analog signal. We assume
be made: it would depend on many parameters. We are in that the FFT size N is specified. It suffices, therefore, to
the process of determining, empirically, the limits of the
method for a number of special cases. We comment below, select the size t of the sampling interval. As we know [I].

briefly, on certain empirical criteria for selecting the set B. heN fq nc interval is e d thened be M o
2r/Nto. Since the data interval is 2T, the number M ofand on the limitations due to sampling, available samples equals 2T/to . The choice of M is guided

For the subset B, introduced in (13) we select the set of by the following considerations: ifM<ZN, then the itera-
points such that the magnitude of W(a) exceeds a threshold tion might converge to the wrong frequencies. If Af is large,
level en : then the aliasing errors are large.

IWn(c)l > e, w EB, It appears from our experience that M = N/4 is a reason-
(14) able compromise and it leads to to = 8TIN. However. as we

SWn(w)l <e En w shall see, to increase the resolution we might use a larger

The choice of E,, is dictated by two conflicting require- value for to.
ments: for a speedy convergence and noise reduction, En must The accuracy of the method and the attainable resolution
be large, it must be sufficiently small so that all frequency depend on the relationship between the unknown frequencies
components of f(t) remain in Bn. In the examples given be- wi and the sampling frequency w0o . If all unknown frequencies
low we used the following method for determining En, are multiples of w.o

We first find the minimum M,,. of I Wn .(w)l in the set Wi~ riww

then the problem is essentially discrete. If the unknown fre-

M.- = min (w)l W ,Bn-j. (15) quencies and their differences are large compared to w,, then
the error is small because it is of the order of w o.If e,-, is greater than pMa_., where m is a constant less The problem of determining wi is difficult if co is of the

than one. then we do not change the threshold level. If e,-, order of w , and w is n
is leis than M, - then we choose en = - . Thus, , = ot a i e m i of <

en =max{(6_n.Il._i }- (16) (, w 0  II .
In this case, the resolution error wo/2 is of the order of wi.

In the examples. pi is chosen between 0.9 and 0.99. Furthermore, aliasing generates spurious frequencies in the

Numerical Considerations vicinity of w i. Indeed, if

The numerical implementation of the method involves the f(t) = e/wir
discrete signals then

f n = f n to ) F . = F (n w ,o ) f = e i n = w (,i ) n e i 2?YJ N

obtained by sampling f(t) and F(w). = ei w w =

Suppose. first, that the problem is inherently discrete. i.e., yielding the discrete spectrum (Fig. 5)
that we wish to find the spectrum of a sequence f,, from in- N-I 1 - W(m - ri-Q)N
complete data. Clearly, the discrete version of the iteration Fm = F fw"' = -ri-0)
and of the band-limited assumption are self-evident. How- n-o 1 -W
ever. the assumption that f(t) is a sum of sine waves has no To improve the accuracy, we can repeat the process with a
obvious discrete version. It corresponds. loosely, to the as- larger value of to, using as starting B, the set containing only
sumption that the smallest distance of the nonzero frequencies the estimated frequencies wi and their neighbors.
is large compared to one (no "neighboring frequencies" are
present). If this is the case, then the unknown frequencies IV. ILLUSTRATIONS
can be determined exactly, provided that the data interval is We illustrate the method with several examples involving
not too small and the noise level is reasonable, signals whose unknown frequencies cannot be determined
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-w 0 0 O -

Fig. 6. Given segment w, t) and its Fourier transform W, 1 w.

041 15

r

0 - 40 0 - 40
ttIi4Z 1(tI)

Fig. 7. Result of the iteration for n= 20 and n 70.

375. 3.75, 375;
S/N'15do S/N ti db S/N-Sdb

0 0

3.75 , J -7 - . 75

t(see) I (Sec

Fig. 8. Given data segment for S/N 15, 11, and 5 dB.

from direct Fourier analysis. In these illustrations we con- In Fig. 6 we show the given segment of the unknown signal
sider several noise levels. With and its spectrum. As we see from the figure, the frequencies

w, (t) =f(t) + n(t) f and f 2 are not visible. The initial threshold is eI = 0.15 and
its value at the nth iteration is obtained from (16) with/j =

the given data, we define the signal-to-noise ratio SIN as the 0.99. In Fig. 7 we show the results of the iteration for n = 20
ratio of the energies off(t) and n(t) in the data interval. In and n = 70. At the 70th iteration the frequencies. amplitudes,
all examples, the noise is white and is uniformly distributed and phases off(t) are recovered exactly.
in the interval (-c to c). The ratio SIN is changed by changing We note that, in this case, the values of et and u1 are not
the size of c. critical. Any value of p between 0.9 and 0.99 and of el be-

The computations are carried out with tween 0.05 and 0.15 is adequate. The iteration was per-
formed also with a data interval containing M = 41 sampling

N = 256 f, 1 Hz t o = 1/256 s. points. In this case, the results are similar but the speed of

To avoid large scaling factors, we divided all frequency com- convergence is slower.
ponents by N12. In the examples we show also the value of b) We consider, next, noisy data with various SIN ratios as
the parameter / [see (16)] and of the initial threshold level in Fig. 8. In all cases,

el.M=51 0.99 0.15.

Example 1: The unknown signal is a sum of two sine waves
f(t) = 1.5 cos (30irt + 600) + 1.25 cos (20irt + 300) The iteration was performed several times with the same

signal but with different samples of noise. As the following
and the unknown frequencies f = 10 Hz and f2 = 15 Hz are indicates, the results are not the same for all samples: S/N =
integral multiples of the sampling frequency W.,. IS dB (c = 0.375). Six samples were tried. In five of these,

a) We first assume that the data interval contains M = 51 the frequencies f, and f2 were found exactly. S/N a I I dB
sampling points and n(t) = 0. (c = 0.625). Fourteen samples were tried. In nine, we ob-
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0 t 0. 0

o -- 40

O) i ,

(a) (b)
Fig. 9. (a) Given segment wl(t) off(rt). (b) Fourier transform of w1 (1).

°° i ..Too i

1w3o0ttLI oo,

0 40 01 40
0 1 Z) 40 tHil

(a) (b)
Fig. 10. Result of the iteration for n = 30 and it = 100.

tamed f, and f,2 exactly. In four cases, an error of 1 Hz de- In this case.
veloped. In one case. the iteration yielded not two but three (2 + 0.4) f 9f' f, 14 + 0.6)f
frequencies: ft' =9 Hz, f2 = 14 Hz. and f3 = 15 Hz. S/N= 5
dB (c = 1.25). This is a very noisy case. Of the eleven samples We used A = 59, M = 0.95, and el = 0.20.
tried, three gave the correct answer, two yielded 1 Hz error, With an FFT size N = 256. we obtained after 350 iteration
five resulted in 2 Hz error, and in one case the frequency 1'2 = steps the frequencies 2 Hz, 9 Hz. and 15 Hz (Fig. I I c).
15 Hz was lost. Increasing the FFT size to N = 512, we found in 200 steps

Example 2: In this example f(t) consists of three sine waves the frequencies 2.5 Hz. 8.75 Hz. 9.25 Hz. and 14.5 Hz. (Fig.
and the data are noiseless. We consider two cases. In the first l1 d).
case, the unknown frequencies are multiples of w.. In the We note that the accuracy in the evaluation of coefficients
second case, they are not. of different levels can be improved if the threshold level e'

a) is not constant through the band but it takes different values
t 1.5 cos 4irt + 1.5 cos (18t + 60° ) in the vicinity of each frequency. This is demonstrated in

the next example.

+ 1.25 cos (28irt + 300). Example 3: The unknown signal is a sum of five sine waves.

We start with the following values of the relevant parameters: f(t) = 1.5 cos 4itt + 1.25 cos ( 12irt + 300)

M=59 /A = 0.95 e1 = 0.20. + 0.375 cos (40irt + 6001 + 0.625 cos 50irt

In Fig. 9 we plot the given segment f(t) and its spectrum. + 1.25 cos (60irt + 45')
Fig. 10 shows the results of the iteration for t = 30 and n = with frequencies 2. 6, 20, 25, and 30 Hz. the noise is zero.
100. At the 100th iteration the frequencies. amplitudes, In Fig. 12 we show the given data, obtained withM = 71. and
and phases off(t) are recovered exactly. their spectrum. In the iteration we assume that jt = 0.99 and

Again the values of ui and el are not critical. Essentially el = 0.04. The level of the threshold level at the nth iteration
the same results are obtained if the data interval is reduced is defined as in (16). However, it is not constant throughout
to M = 51 provided that ja is not less than 0.95. the band. Its value is determined from the behavior of lV,,(W)

The method has been tried also for a smaller data interval, in the vicinity of each maximum IFig. 13).
However, the convergence is slow and the result inaccurate. In Fig. 13 we show the iteration for i = 10 and it = 20. At
With M = 41, gi= 0.99, el =0.20 the component with the the 50th step, (Fig. 14) we recover the frequencies 2.6. 25.
lowest frequency is lost. and 30. As it is clear from the figure. W,,(w) contains a peak

b) in the vicinity off= 20. To determine its exact location we

f(t) = 1.5 cos 4.8nt + 1.5 cos ( 18irt + 60")  introduce the following variation to the method: we subtract
from the given data the recovered portion of ft) and repeat

+ 1.25 cos (29.2t + 300). the iteration starting with the new data d(t) so obtained.

. . . . . ....... . . .. . . .. . .. . . . . . l ' '. ... . .. . i1 1 . .. . . . '- . .. . . . .-. I... . .. . . .. _4
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4,- 4 ?5

0 0

°4 _ _ _ -44 1

-w0 - f-f0
1(secd . (see)

(a) (a)

-3 038f

0 20 - 40 0 20 40

t (j4) ( H )Z)

ib) (b)
Fig. 12. (a) Given segment w, (t). (b) Fourier transform of w I MF).
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(c) 0 20 - 40
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0.72 -

00
0 1Hz)

0 20 - 40(d)
f (Ha)

Fig. 11. (a) Given segment whir). (b) Fourier transform of w1(t).
(c) Result of the iteration for n = 350 and FFT sizeN = 256. (d) Re-
sult of the iteration for n = 200 and FFT size N = 512. Fig. 13. Result of the iteration for n = 10 and n = 20.

In Fig, 15 we show d(t) and its spectrum D(w). The unknown not a multiple of w, so that the aliasing is significant. We as-

frequency f= 20 is recovered at the 20th step (Fig. 16). sume that

The iteration was performed also with a smaller data seg- f(t) = 1.25 c (5.41t + 3Q0) T = 0.08 s.
ment (M = 61). The results, however, were similar but the
convergence slower. This yields M = 41 sampling points in the data interval.

Example 4: To test the limits of the method, we consider The iteration was performed with u = 0.99 and el = 0.05.

as a last case an example where the data interval is less than We considered four different signal levels (Fig. 17).
one-half the unknown period, and the unknown frequency is a) n(t) = 0. At the 40th iteration we recover the frequency
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Fig. 14. Result of the iteration for n = 50. (a)
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Fig. 15. (a) New data segment d(r). (b) Fourier transform ofd(t). 2.3 S-_ _ _

S/N'2db

0-325 _____________-.__

0

I0
(d)

0 20 - 40

(MRz) Fig. 17. Given data segment w ( ) for various noise levels. (a) S V

Fig. 16. Result of the iteration for n = 20. 22 dB. (b) SIN = 12 dB. (c) S/N = 8 d8. (d) S/N = 2 dB.

f= 3 Hz. This is the nearest sampling frequency to the un- quency and its two neighbors f= 2.5 and f= 3.5. After n
known f, = 2.7. However, since the resolution frequency 150 steps, we recovered the frequency f= 2.5 (nearest to the
f, = I is of the order of fl, the error is large. To reduce it, unknown f, = 2.7).
we increase the sampling interval from t. = 1/256 to t, =  The process was repeated with to = 1/64, that is, for f, =
1/128. This yields f,o = 1/2 Hz but the number of sampling 1/4 and M = 11 sampling points. The iteration yielded two
points is reduced to M = 21. The iteration starts from the frequencies: fa = 2.5 and ft, = 2.75 with amplitudes lc,, =
band B, consisting of the location f= 3 of the recovered fre- 0.616, lCbl =0.630 and phases p. = 30.060. p = 31.440, re-
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TABLE I
RESuLTS OF THE ITERATIO FOR 20 NoJSE SAMPLES

JA)

2 .51 -! 2. ,i

0.21 2 71

'V 1o 1 I

0V 1 20 '4 0 0 20 40

2. 'I '

t (Sil f (MI)

02 ~~~ 2..201l 2

024 -0.8 04f-O2

0 20 -4 0 0 20 - 0o

(c) (d)

Fig. I18. w, (t) =1.25 cos (5.4fft + 30* ) 
+ n(t) Irl < 0.08 s. (a) Fourier transform of w, M. (b) Result of the iteration

for fo = I Hz (M 
= 41) and n 

= 
100. f(t) = 1.38 cos (61rt + 25.50). (c) Result of the iteration fOrfo = 0.5 Hz (M 

= 2 1)
and n - 200. f(r) , 1.23 cos (Swt + 31.80). (d) Result of the iteration for fo 

= 0.25 Hz (M - 11) and n - 200. f(t)=0.62 cos (5*t + 30.10 ) + 0.63 cos (5.50t + 31.40 ) = 1.246 cos (2.63fft + 30.7 - -

spectively. The location f and amplitude " of the unknown In Fig. 18 we show the results for SIN = 8 d8 and o = 1
frequencies was finally estimated by interpolation, yielding 0.5, 0.25 Hz.

+ fo 
=  
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3. Undersampled Data.

The problem of estimating the spectrum S(w) of a signal from undersampled

data was considered. We showed that, although it is not possible in general

to recover reliably S(w), in special cases adequate estimates are possible.

The results were presented in the following paper:

"Spectral Estimation from Random Samples"

IEEE International Conference on Information Sciences and Systems,

Patras, Greece, 1979.

4. Spectral Estimation.

The fundamental problem of estimating the spectrum S(w) of a random signal

in terms of a single realization was considered with emphasis on the method of

Maximum Entropy. Recent results led to the following two papers:

"Entropy: From first Principles to Spectral Estimation"

IEEE Tr-ASSP Workshop on Spectral Estimation, Hamilton, Ontario, 1981.

"Maximum Entropy and Spectral Estimation"

IEEE Tr-ASSP (to appear).



23.

MAXIMUM ENTROPY AND SPECTRAL ESTIMATION: A REVIEW

Athanasios Papoulis

Polytechnic Institute of New York
Route 110

Farmingdale, N.Y. 11743

ABSTRACT
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I. Introduction

In the last decade, several papers have been published discussing a

method of spectral estimation based on the principle of maximum entropy I I-

[41 and the relationship of this method to entropy rate [51, the Wiener theory

of precliction [61, [7] autoregressive processes, the Levinson algorithm [81,

lattice filters C93, all-pole and all-pass filters, and stability. However, it

appears that no single publication in the open literature explains simply the

interconnection of these topics. The purpose of this paper is an attempt to do

so starting from first principles [101. The effectiveness of the method in

the solution of specific problems will not be considered here. In the Appendix,

we comment briefly on its conceptual justification. The material is developed

with some originality; however, the paper is essentially tutorial.

The entire development is based on the orthogonality principle £ 111:

In the estimation of a random variable y by a linear combination

y = a 1x I + + axN (1)

of the N random variables x1 , •.., xN (data), the MS error

P= E{(y-i) z 1 (2)

is minimum if the estimation error

e = y - (3)

is orthogonal to the data Xk# that is, if

Elexkl = 0 k= 1, ... ,N (4)

The resulting MS error P is then given by

P = E e Z ] = )E ey) (5)

We state also for later use the following results from the theory of

linear systems with stochastic inputs [II]: Suppose that the input to a dis-

crete linear system is a stationary process x[n] with autocorrelation

-1-
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R [m =E(4n+m x[n3) (6)
xx

and power spectrum

S (z) , R xx[m] (7)

M= -00

If h[n I is the delta response and H(z) the system function of the system, then

the power spectrum of the resulting output y[n3 = x[n)*h[n3 is given by

S (z) = S (z) H(z) H(I/z) (8)
yy xx

In the above we assumed, as we shall throughout the paper, that all

processes and systems are real. With trivial modifications, the results hold

also for complex processes. The spectral estimation problem has two parts:

I. Deterministic Estimate the power spectrum S(z) of a process s [n3

in terms of the N+ 1 values R[03, R[13, ... , R[N] of its autocorrelation.

2. Random Estimate the power spectrum S(z) of a process s [n] in

terms of the N values sil, sZ ... , sEN O 3 of a single realization of

s[n].

As we show in the paper, the maximum entropy solution of Part 1 can

be presented as a recursive modification of the Wiener prediction filter. The

modification is based on the Levinson algorithm expressed in terms of forward

and backward predictors. The solution of Part 2 is given by an estimator whose

various parameters satisfy the same equations as in the deterministic case,

with the only difference that in the evaluation of the recursion coefficient

r N I see (53) 3, all ensemble averages are replaced by suitable time-averages.

N
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I. Prediction

We wish to estimate the future value sin+ 13 of a random signal sin)

in terms of the sum

N

NN;N In + 1 =as [n3 + ~a Ns~nN+ 13 F a N s~nk+I)(9
k= 1

involving its N most recent values s In - k). The set of weights a N that mini-

mizes the MS value of the prediction error defines a FIR filter of order N

(Fig. 1) called the forward predictor (one-step) of s in]. The superscript N
N

in a k specifies the order of the predictor. Since s [n) is stationary,, the
N

optimum weights ak are independent of n. We can give, therefore, to the

variable n in (9) any value. With

the forward predictor error, we have [see (4) 3

E (N n] sin-k3 I = 0 1<k<N (11)

This yields the system

R[03a N+R11aN+ +RIN-1aN=RII
N

N_+23 Na+...+REN-zlaN -Rz(R[N1a I + R[03a +...+R N-a. = R[23

1 2 N

expressing the predictor coefficients aN in terms of the N+ I values R[O),

R[N of the autocorrelation R[m) of sn]. In the next section, we discuss

a recursion method for solving this system.

Applying (5) to our estimator, we conclude that the MS estimation error

PN is given by

-3-
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N
p N - ef"2 [n) E(;Cn3s[n]3 = RCO] - E a NR[k] (13)N N ~k

k= I

Note: Consider two processes sEnI and s 0 EnI with autocorrelations R[m)

and RoCm3, respectively. From (12) it follows that, if

R[m = Ro[m] for 0<m<N (14)

then the Nth order predictors of s[n ] and s [n] are identical. Conversely,

if the Nth order predictors of s n] and so[n. are identical, then (12) shows

that RCm] = cR 0m 0<m <N. The proportionality constant c equals I if

R[mj Iand R [m] satisfy one additional equation, for example, if the'Nth order

MS errors are equal or if R o[0] = R[03, that is, if the two processes have

the same average power

P0 = E(s2 [n] = R[0] (15)

The prediction error [see (10)]

N
eN.[fl) s~n3 a N as En- k3 (16)

k= 1

is the output of a system (Fig. 1) with input s [n3 and system function

N
(z)= 1 - azk (17)

k=I

This system will be called the forward error filter.

The backward predictor. We shall now estimate the process s [n3 in terms

of the backward predictor
N

INCf3 - bNs~n+k3

k= 1

involving its N closest future values s [n + k]. With

Cn[ = sin) - SN 3n) (18)

-4-
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the backward predictor error, we have as in (11)

E(eN[nnsn+k = 0 1<kN (19)

This yields the system
N
ZbNR[r-k = R[k 1<k<N

r= 1

N= Nwhich is identical to the system (12). Hence, bk a ak, that is, the backward

predictor of s EnI is the sum

N N
N [n3 = a1s*n+ ]+...+a s[n+N] (Z0)

The predictor error is thus given by

N
N keNtn] sin] - aks~n+kJ (21)

k= I

Denoting by PN its MS value, we conclude as in (13) that

N
iN = EeN [ns[n])=R[O] -= a k R [ k ]

k= I

In other words, the forward and backward MS predictor errors are equal:

= P = PN (22)

Clearly, eN [n] is the output of a system with input s EnI and system

function
N

n() I a kzk (23)
k= I

This system will be called the backward error filter. Comparing with (17),

we conclude that

HN (z.) HN(l/z) (4

-5-
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In the above, we assumed that s En3 is a real process. The results
hold also for complex processes subject to the following modifications

RC~m=R*m) N =N*
R[-m 3 = R ' Cm ] bk = (ak ) N(z)

Autoregressive processes. An autoregressive process (AR) of order M is a

random signal s £n3 satisfying the recursion equation

sCn -c s[ n- M s [n-M =C[nJ (25)

where ; [n] is stationary white noise with

R LCm = a 6[m] S =C (26)

From the definition it follows that s Cn] is the output of a linear system with

input ; [n3 and system function

T(z) = 1 (27)
M -k

1- Z ckz
k= I

If this system is stable, then s [n] is a stationary process given by

00

s[n3= E h[r];[n-r3 (28)

r=0

where h[n3 is the causal inverse transform [123 of H(z). This shows that

for any k > 1, the random variable s [n - k3 is a linear combination of only

the past values of ; [n3, hence

E~s[n-kl [n3)=0 k> 1 (29)

because ;[n3 is white noise by assumption.

We maintain that the predictor ;N [nI of s [n of order N >M is the

sum

s Cn cls[n-13+...+cMs[n-M] (30)

-6-



30.

and the predictor error eN [ n 3 = sEnj - ;N[n] equals the process; En):

e N[n3 [n] (31)

Indeed, as we see from (25), sn] s N [n] = ;[n 3 . Hence, the orthogonality

condition (11) follows from (29). The resulting MS error is given by

PN =E Ce 'z [n (; n z?
E eN £n)= Ej 2 Cn)] =

We note that the sum in (30) is of the form (9) where

ck < k<M (
ak N= (32)

0 M<k<N

With N(z) the error filter as defined in (17), it follows from (27) and

(32) that the system function T(z) of the system (AR filter) specified by (25)

is given by

T(z) = (33)
HN(z)

Clearly, s [n3 is the output of T(z) with input ; [n). Denoting by S(z) its

power spectrum, we conclude from (8) and (33) that

S(z) = S;(z) (34)
HN(z) HN( 1/z)

2Since S (z) a a , the above yields

)-S(e jwT) M 135)

- ck e

k= 1

Extrapolation. The inverse transform of S(z) is the autocorrelation R[m) of

s In). From (12) and (32) it follows that.

-7-
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RMN R[N-k3 for everyN>M (36)

RCN =Z ckRNk
k= l

Setting N =M, we obtain a system of M equations expressing the M coefficients

ck in terms of the first M+ I values of R [m'. With c k so determined, we

can use (36) to evaluate successively RCN) for every N> M. Thus, (36) is

an extrapolation formula for RC N ].

III. The Levinson Algorithm

The solution of the system (12) involves the inversion of the matrix

R[03 R[13 . . . R[N-21

R[13 R103 . [ - 21-Z

(37)
.. .. ........... . .

RCN-13 REN-Z . . R[03

This matrix has a special form (Toeplitz 113]) and can be inverted easily by

a simple iteration known as Levinson's algorithm [83. We shall present the

result as a recursion involving directly the predictor coefficients.

Theorem. The forward predictor ;N InI can be written as a sum

sN~n) = SN-in3 + rN(s[n-N] -sNl N - N ) (38)

where

N-I
N-1smk

k= 1
(39)

N-i

SN-I Cn-N) a k sin-N+kl

k= I

are the forward and backward predictors of s In ) and s in -N 3 respectively,

and the coefficient rN is a constant to be determined. Equation (38) can be

expressed in terms of the forward and backward predictor errors

-8-
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eN-l[ n 3 s n]- sNl[n3 eN-1In-N3= s[n-N] -sN_1En-N3

Indeed, subtracting both sides from s En), we obtain

e N n =eNn_ I n- rN;Nl_ n-N3 (40)

It suffices, therefore, to prove (40).

Proof by induction. Clearly sN[n is a linear combination of the N most

recent values s In - k] of the signal. It suffices, therefore, to show that eN

satisfies the orthogonality condition. By the induction hypothesis, we assume

that the sequences eN-1 andeN-1 are the predictor errors of order N - 1,

that is, [see (11) and (19)]

E lN lns n -k 0 1<k<N -1

(41)

E[eN-1 n-N sIn-k =0 1<k<N-l[

We shall show that if eN is given by (40), then it is the Nth order predictor

error. As we know, this is true if

EC;N[n]s[n-kk3= 0 1< k<N (42)

From (41) it follows that (42) holds for 1 < !< N - 1. It suffices, therefore,

to select rN such as to satisfy (42) for k=N: E(eNn ] sin-N])=O. Insert-

ing (40) into the above, we obtain

E N In sin -N]) = NE(eN_ 1 n-N3 sin-N3 (43)

and since Isee (39)3

N-1

E C e(n3 s n -N3 I=E (s In]- aN-1s In k3) In -N]

N-I

-" [N -Z k REN-k)
k=k

and

-9-
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E(4N_In-N ] sCn-N I)= PN-1.

(43) yields

N-i N

PN.rN = RIN]- Z aN-R[N-k (44)

k= 1

We have, thus, expressed 1N in terms of the coefficients N-1ak of the predictor

of order N - 1 and the corresponding MS error PN-1" This error is given also

by [see (22)3

PN-* , Ee (45)

N-i e N 1 LI] sL
1 1

J

With this choice of FN, (42) holds for every k from 1 to N.

Using (38), we can express ak in terms of akN - i and the constant rN .

Indeed, with sN InI as in (9), we obtain equating coefficients of both sides of

(38) the recursive equation

N N-I N-i N
a k -rNaN_ 1<k<N-1 aN rN (46)

where rN is determined from (44). Since this equation involves the MS error

PN-I' to complete the induction, we must determine its Nth order value

PN = Ee N[n3 sCn3) (47)

We maintain that

PN = 1 2 - r' ) PN-l (48)

To show this, we insert eNIn3, as given by (40), into (47) and use (45) and

the fact that !

N-i

Et N In -N3 sIn] Ef {(s In- -3 Z~ sn-~) sk)
N-I k= I

=R[N3 - ' a I R [ N "- k3= rN PN .I
k

k= I
-10-
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The result is Equation (48). The induction starts with r 0 = 0, P 0 
= Es n3) =

R[03 and for N= 1 it yields Porl = R l , P=Po(l - r 2 ) .

The recursion (38) and its equivalent (40) hold also for the backward

predictors. Reasoning similarly, we obtain

s NIn -N3 = sN -I n-N]+ rN(s~n -;NI~n3) (49)

eN I n ' N3 = eN lIn-N] - rNeN_l~n3 (50)

Lattice. Equations (40) and (50) can be given the following graphical interpre-

tation [92, [142. In Fig. 2, we show N lattice sections connected in cascade.

Each section consists of one delay element and two multipliers. The input to

the system so formed equals s In 1 e0 n] = e on] and the two outputs equal

the forward and backward predictor errors.

We note that the transfer functions from the input A to the two outputs

B and C equal HN(z) and

-N _ NNZ.N (z) = - (z/z

respectively, where HN(z) is the forward e; ror filter and HN(z) is the back-

ward error filter.

Note: We derive next for later use a modified form of (44). Clearly, [see

(41)3,

(= EeNn]] = ((eNI rN N n-I n N (51)

Since the coefficients of the predictor minimize PN, we must have

=7=E -2(eN-l4n]-rNeN- l [ n-N])el n-N1

N

Hence,

PN-I rN = E N-1 [neN-1 I n-N] 3 (52)

-11-
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The above can be written in the symmetrical form

E(e N-1 n~el In-N3) (3N= 153)rN IE -z In] + - _,n-N3)
Zt [eNl - I +eN -lnN

This is a consequence of the fact that the forward and backward MS errors are

equal. It can also be derived by writing PN in the symmetrical form

P= e In] + eIn-N] =EeN_l In] - r.Ne In- NI +NPN N 2 I+

+ [n
+ (N ln-N - rN Njn (54)

and minimizing with respect to rN.

Stability. We have shown that the Nth order MS error PN is given by PN =

(Ir2 PN- Since P N < PN-I, it follows that

IrN < 1 (55)

with equality iff PN = PN-" We shall use this result to show that the forward

error filter
N.

H N(z)= 1 - E akz (56)
k= 1

is a Hurwitz polynomial, i. e., all its roots z i are inside the unit circle [ 141:

Izi] < 1 (57)

From this it will follow that all roots of the backward error filter FIN(z) are

outside the unit circle because

H IN(z) = HN(1/Z) (58)

Proof by induction. Clearly, H I(z) = 1 - r I z hence, 1Zl = I r i < 1.

Suppose that (57) is true for all orders up to N-I. We shall show that it is

This proof was suggested to the author by Th. Andrikos.
.-12- "
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true for order N. From (40) and (58), it follows that

HNz IiHNz r (I /I .
HN z)= N -, z)rN HN - ,(z) , - 1(z) N rz 8N-1 ) ()

liz is a root of AN-I(z), then by the induction hypothesis, IzI 1. And,

since i/z, is a root of HN 1(,/z), we conclude that the ratio

HN -I )Ha(z) =(60)

is an all-pass system, hence, it can be factored into a product

* *I z.z -(z) z 1 -1 ZI-
Ha(Z) I

az -zI  z -ZN 1

From this it follows that
• {l Izl>1

Hzl(z) I I I =1 (61)

I> I Zl < I"
>11

because this holds for every bilinear term of Ha (z). To complete the proof,

we shall show that if z0 is a root of H N(Z), then °z 0<1. Setting z =z in

(59), we obtain

HN(zo) 0: HNl(zo) - rNz o fN-('/zo)

Hence

-N {N /o

I 0 HN(1/zo) H (z )
'N~ ~ Ha(Zol z o

But I rN I < , therefore, I Ha(zo)I > 1 and (61) yields I zoz < 1.

-13-
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IV. Spectral Estimation

We shall now relate the preceding results to the method of maximum

entropy.

Deterministic case. We are given the first N+l values of the autocorrelation

R[m 3 of a random process s [n3 and we wish to estimate its power spectrum

00

S(z) = R[m3z m  (65)

m=- o

For this purpose, we shall construct an AR process s 0[-a3 of order N with0

autocorrelation R0CmI such that Ro m ] = Rim] for lmI]N. The power

spectrum S (z) of this process will be used as the estimate of S(z).0

The construction of so[n ] is based on the determination of the Nth

order prediction
N

sN~l = [n ak sin-kl (66)

k= i

N
of s [n3. As we have shown, the coefficients ak of this predictor can be

determined by solving the system (12), or equivalently, from the recursion

equations

aN N-I N-I

k k + rNaN.k l -

N

PN-I FN = RN - aN 1 R[N- k3 N> ( (67)

k= 1

N =aN rN PN= (l-rN) PNI

with the initial condition P = R[03. In either case, the solution is uniquely

determined in terms of the known values of Rum3. We next form the AR

filter of Fig. 3 with system function

-14-
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N1- 
N -k

T(z) where HN(z)= - ak z (68)
HN(z) k=1

is the error filter of the predictor sN I n ] of sin] [see (17)]. As input to

this system we use a stationary white noise process ; In with average power

P N" Denoting by s 0 n] the resulting output, we conclude that

N

so n]- a soIn-k]=;In] R[m] = PN6Em) (69)

k= 1

The system T(z) is stable because HN(z) is a Hurwitz polynomial. There-

fore, its output s0n] is stationary and since it satisfies (69), it is AR. From

this and (32), it follows that the Nth order predictor s [n) of s 0n3 is given

by

N

Son ]  Na s In- k] (70)ko0k= I

This shows that the process s 0 n ] of Fig. 3 and the original process sCn] have

identical predictors, therefore [see (14)], their corresponding autocorrelations

R [m3 and Rim) are equal for Iml SN within a factor. We maintain that this

factor is one. Indeed, with eoCn I so n I Sn ] the prediction error of

S 0 En], it follows from (69) and (70) that

.E(e En] I= E(; En]) = R [01 = N

hence (see note, page 4)

R 0m] = Rim] Iml < N (71)

This shows that if we use as the estimate of the unknown spectrum S(z)

of s I n ) the spectrum S (z) of the AR process s o In ), its inverse transform

will agree with the given values of RCm). Since S ;(z) = PN' if follows from

(34) that

-15-
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S 5 )HN ( z)IZ (72)

and on the unit circle,

S S) =So(e JT = N (73)

N e j(a

k= 1

This is the maximum entropy estimate of the unknown spectrum S(w). The

Nnumerator PN and the coefficients ak are determined from (67).

Random case. We are given the N samples (data) s I1 ], s[z], ... , s[No ] of

a single realization of a process s [n] and we wish to estimate its power

spectrum S(w). The maximum entropy estimator S() of S(w) is an all-pole

function as in (73). However, unlike the deterministic case, the value of N

is not specified. The problem now is to select first N and then to estimate

N
the coefficients ak. Suppose that we have somehow decided on the value of N.

We then proceed as in the deterministic case using the recursion equations

N(67). These equations specify ak in terms of the constants and the initial

condition P0 = R [0. It suffices, therefore, to determine the estimates TN

and P of these constants by appropriate time-averages involving the given

data.

For the estimate of Pop we use the sum

N

: s [n3 (74)
0 n= 1

For the estimate of rN, we use the time-average version of (44) or (53). As

we have shown, these equations are equivalent; however, because oi end-effects

the corresponding time-averages are not equivalent. We shall use the latter

-16-
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because, unlike (44), it leads to an estimate rN that satisfies the stability

condition

Our problem, thus, is reduced to the determination of the time-average

form of the equation

El E [ n] ' In-N3l 3

rN . N-1 eN 1 N (76)N _Z
IE (e In] + e In-NIJ

where

[NIn 3 s In] -(a Ns n1+. N-1. = - a1  s'n- I+.. -I s -N+1 ])

eN In-N3= sin-N3 a s[n-N+lI+...+N-is[n-1J

The above involves all samples of s In] from n to n-N. And since the data

are available only from n= 1 to n=No, to avoid overflow in the time-average

form of (76), we must limit the values of n from N+ i to N 0 . This interval

has N -N- I points, hence,
0

N
0

N -N-I-N

S o n=N+1 N(77)
N N Non-N2

-N -i Z (e 1 n + e 1  nNJ)
n=N+ 1

The above ratio satisfies (75) because (Schwar .z inequality)

adIeN- IE~e ln -NJ 3 -Cn] N -En-N]and

IJ':Y_ x I + Ilyl

With rN so determined, the Nth order estimate of the unknown spectrum

is given by

-17-
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(= (78)
N

fi - a,

k= 
1

where the coefficients are determined recursively as in (67):

-N ^N-1 -N-1 -N
ak =ak + rNaN-k aN = r9 N (79)

P N = (l -r N) PN- (80)

The recursion starts with the estimate (76) of P 0 .

We conclude with a brief comment on the choice of N. This choice is

dictated by two conflicting requirements: For a satisfactory approximation of

the unknown spectrum S(w) by an all-pole function o (w), N should be as large

as possible. However, in the estimate (77) of r N' the number of terms in the

time-average equals N -N -1, and as we know, this number should be large

for the variance of the estimate to be small. Various schemes have been sug-

gested for selecting N but they will not be discussed [153, [161.

The estimate (79) of rN can be obtained by minimizing the time-average

form N
01 -.

0 m=N+ 1

of the MS error PN as given by (54). Setting / = 0, we obtain (77).

Howeverthe resulting value of I does not equal the estimate N of PN ob-

tained recursively from (80).

-18-
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V. Maximum Entropy

We shall finally show that the all-pole model is a consequence of the

principle of maximum entropy. The required background is discussed in

the Appendix. We repeat the problem: We are given the N+ 1 values R[0,,

R[N3 of the autocorrelation R[m] of a random process sin] and we wish to

estimate its power spectrum S(w). The statistics of s [n] are determined in

terms of the joint density of the r.v. s[n], s[n-l], .... s[n-r]. Hence,

to apply the method of maximum entropy, we must determine the unknown

values of Rim] so as to maximize the entropy H(s 0 , ) of these r.v.

and to find the limit as r -+oo. This is equivalent to the maximization of the

entropy rate H8 of s[n] [see (A-IZ)3] subject to the given constraints.

We shall show that H s is maximum if s Cn] is a normal process with power

spectrum as in (73).

We give three proofs. The first two involve the maximization of H s

In the third, we find R[N+ 13 by maximizing H(s 0  S and.with RCN+1 I

so determined, we continue the process. This method can be questioned

because it does not yield the maximum of H(s 0 , ... , , ... , N+k ) subject

to the given constraints. However, the result is correct in the limit as k -40.

Method 1. We form the Nth order predictor sN[n of s[nI and the predictor

error

N

s[n a N a [n-k3 eN 3 (81)s~3 k  N (l
k= I

Clearly, ;N[n3 is the output of the error filter H^N(z) [see (17)) with input

a[n ). Hence, [see (A-6)J, its entropy rate H- is given by
e

e-=H 4 /ofiiN(e! ,i.)

H += 0 N~f ejr) dw- (82)
He s 4w fN d 8

0 _
0

To maximize H., it suffices, therefore, to maximize H- because the integral
e

is specified in terms of the given values of Rim]. As we know,

in
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N

e 2[n3'= PN- R[03 - NR[k] (83)

k= 1

Therefore, H is maximum if the process eN [n ] is normal white noise (see

Appendix). And since eN[n] is the right side of the recursion equation (81),

we conclude that the optimum s[n3 is an AR process of order N, hence, its

power spectrum is all-pole as in (73).

We note that the optimum s [n3 is a normal process because

it is the output of the stable linear system T(z) = 1/%N(z) whose input is the

normal pr-cess eN [n].

Method 2. In the following reasoning, we assume that the process s [nJ is

normal. As we have just shown, this assumption is not restrictive. From

the normality of s [n3 it follows that, within a constant, its entropy rate is

given by [see (A-Z0)

H o I ng(w)dw W (84)
0 _W

0

where
go

.'9 = ( R[meJm (85)

Since R[m 3 is specified for Imi _N, the above integral depends on the values

of Rim for Iml > N and it is maxmum if

BH s =0 = 1 Wo I -jm "T' m N(6

IU- f -e dw I >N (86)

This shows that the Fourier series coefficients of the fun-ction i/S(w) are zero

for I mI > N. Hence,

-20-
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N

ce (87)
k= -N

And since 3(w) > 0, it follows from the Fejer-Riess theorem £ 1Z) that the

above sum can be written as a square. This yields

N (88)

. bk e
lk=O

We have thus shown that 9(w) is an all-pole function as in (73) where PN =1/ 1bo1 2

and ak = bk/bo .

Method 3. This method is iterative. In the first iteration, we determine

R[N+I] so as to maximize the entropy H of the r.v. s[n], s[n-I1, ..•

s[n-N-I3. For this purpose, we start with the assumption that R[N+1] is

specified and we determine the joint density of the above r.v. for maximum

H. As we show in the Appendix, H is maximum if these r. v. are jointly

normal with zero mean. In this case Isee (A-24)]

H =In ZTTe) N+ A (89)

where

R[O] RE13 R[N+1]

A R[13 R[0 . . R[N3

R[N+l] R[N3... R[O]

The above determinant is a non-negative quadratic in R[N+ 1 and it is maxi-

mum if
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N

RN+13= a NR[N+1-k3 (90)

k= 1

where the coefficients a N satisfy (12). With R[N+1] so determined, we con-

tinue the iteration, and at the rth step we determine RCN+ r ) so as to maxi-

mize the entropy of the r. v.

s n,, s[n- N- r] (91)

This yields the extrapolation formula

N

R[N+r3 = aRN+r- k (92)
k=1

The coefficients a N + r of the predictor of s [n3 of order N+ r satisfy

again the system (12), where now N is replaced by N+ r. From this and (92)

it follows that

aN+r =0 for N<k<N+r

This shows that the Nth order predictor is also the predictor of any higher

order; hence, s [n3 is an AR process of order N and its power spectrum is an

all-pole function as in (88) [see also (35) and (36)j.
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APPENDIX

ENTROPY AND ENTROPY RATE

We present next for easy reference the relevant concepts from the

theory of entropy.

Consider a probability space S and a partition A of S, that is, a countable

collection of mutually exclusive events A i whose union equals S.

Definition. The entropy H(A) of A is the sum

N
H(A) = - p, nPi where pi = P(A)" (A- 1)

i= 1

Thus, entropy is a number associated to each partition of a probability

space. This number has the following significance. As we know, if the experi-

ment is performed n times and the event A. occurs n. times, then "almost1 1

certainly"

pi ni/n (A-2)

provided that n is "sufficiently large. " This heuristic statement is the basis

for the use of probability in real problem. It can be given a precise interpre-

tation in the context of the law of large numbers [ 11).

We shall call each sequence of the forms t = (Ai occurs n. npi times

in a specific order ) typical. The union of all such sequences will be denoted

by T. Clearly,

P(T) =- I (A-3)

because according to (A-2), the typical sequences occur "almost certainly."

Each typical sequence is an event in the product space S n= SX. -- XS n and

n I n 2  nN
P(t) p I P2  PN (A-4)
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Inpi
Since n i a np. and pi = e , it follows from (A-I) that

P(t) a! enp l np l  nPNn PN -ni(A(

Hence, the total number NT of typical sequences is given by [53

N e nln(A) (A-6)

It follows readily from (A-I) that H(A)<InN with equality iff pi = 1/N. And

n nsince the total number of sequence in S equals N , we conclude that if all.

p Is are not equal, then

H(A) < InN NT<< Nn

for large n. Thus, although P(T)= 1, the number N T of sequences in T is
nT

small compared with the total number Nn of all possible sequences. It is

this result that forms the basis for the applications of entropy. We shall use

it to establish the conceptual equivalence between maximum entropy and the

classical definition of probability.

Suppose first that we wish to determine pi in the absence of any prior

information (no constraints). In this case, all sequences in Sn are equaly

likely, hence, NT must be nearly equal to N n because P(T) - 1. From this and

(A-6), it follows that H(A) must equal its maximum InN.

Suppose next that prior information is available in the form of inequality

constraints, or expected values. Such information leads to the condition that

only certain sequences in the space S are admissible, forming the subset

S n . All typical sequences are now in Sn , and since P(T) - 1 and the sequencesC C

inS n are equally likely, N must contain most of them, i.e., H(A) must be
c T

maximum subject to the given constraints.

The above argument is imprecise in the same sense as (A-Z), however,

as in that case, it can be given a precise interpretation as a limit theorem.
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A consequence of the conceptual equivalence between maximum entropy

and classical definition is the conclusion that the former is subject to the

same critique as the latter. We should note in support of maximum entropy

that in most problems involving prior constraints, the classical definition must

be applied not to the original space S, but to the vastly more complex space

Sn whereas the maximum entropy deals only with quantities in S. This

simplification is the primary reason for using maximum entropy. However,

it is in such cases that the results are least reliable. We shall illustrate with

the die experiment. In the absence of prior information, we reach the reason-
expected value of the

able conclusion that p.= 1/6. If we know, on the other hand, that thelzero-one

r.v. associated with the event "one" equals 0. 1998, say, then the conclusion

is that p, =0. 1998, P2 =p3 = " p 6
0 " 16 004. Unlike the fair-die case, our

trust in the correctness of these values is not great, although we have no other

reasonable alternative.

These observations are relevant we believe in the application of the

method to spectral estimation problem. In our view, the method is popular

not because it leads to an all-pole model as.a logical imperative, but rather

because the model is numerically simple, and unlike earlier methods, it can

detect sharp peaks in the unknown spectra.

Random variables. Consider a discrete-type r. v. x taking the values x. with

probability p1. Clearly, the events [x=x,) form a partition A . The entropy

of the r.v. x is by definition the entropy of this partition:

H(x) = H(A) - Pi In Pi (A-7)
i

The entropy of a continuous-type r.v. x cannot be so defined because the events

(x xi ) do not form a partition (they are not countable). In this case a limiting

argument is used: The r.v. x is approximated by a discrete-type v.v. x 6 taking
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the values xi =i6 with probability pi = f(xi)6 where f(x) is the density of x. As

we see from (A-7)

H(x 6 ) - - 6f(x )1nf(xi) -1n6 7 6f(xi)
j i !

Hence, H(x 6) -o as 6-10. This is so because of the underlying assumption

that the various values of x can be recognized as distinct no matter how close

they are. However,

00

H(x 6) +n - f f(x) Inf(x)dx as 6- 0
.00

And it is this limit that is used as the entropy. of x:

00

H(x) - f f(x) tnf(x) dx = -E (Inf(x) (A-8)
-00

The addition of the term In6 is a recognition of the fact that, in real problems)

only values of x wiaose difference exceeds a certain level can be considered as

distinct.

The joint entropy of the vector r. v. x = (x I , ... , Xr) with density

f(X .. , x) is defined similarly:

H(X x.r) = -E(Inf(x I , Xr) 3 (A-9)

As we know II3, if y:(yl, "''' Yr) is a linear transformation of x, that is,

if y=Ax where A is an r by r non-singular matrix, then

JAI

hence,

H(yl, .,Yrd = -E(Infl , .. ,xr)] +1nJA (A -10)

Entropy rate. We shall finally define the entropy rate of a discrete stationary

process x[n]. From the stationarity of x[n3 it follows that the joint entropy
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of the r.v. x n , ... , x[n-r+ 1 is independent of n. The entropy rate H x

of the process x[n] is by definition the limit

1
H -H(xI "' ,X) as r-*co (A-12)x r r

(TSuppose that x[n) is the input to a stable causal system with delta response

h[n) and system function H(z). If x[n]is applies at n= -o, then the resulting

response y[n3 is stationary with entropy rate Hy.

Theorem I. If H(z) is minimum phase, then

H = M + - foInIH(e 12 d  w=- (A-13)y Hx 4w 0o T
0

0

Proof. We can assume, introducing if necessary a change in sign and an

appropriate shift of the time-origin, that h[n3 > 0. If x[n3 is applied at n= 0,

then the resulting response
n

in] = E x[n-k] h~k3 (A-14)

k= 0

is not stationary. However, it tends to the stationary process y n3 as n -soo.

Clearly, (A-14) is a linear transformation of the r.v. x 0 = x[03, ... , xX[n]

into the r.v. Y0 =o[, ... , yn=f[n] of the form y=Ax where

h[03 o . . 0
h[l h[03 . . . 0 hn+IA J AI h hn'0

h[n] bin-13 h[03

Hence [see (A-8)3

H(y 0 , .. ,yn) = H(x 0 , ... x n ) + (n+ 1) Inh[03

Dividing by n+ I and making n -too, we obtain

Hy =H x + I nh [ o
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Therefore, to complete the proof of the theorem it suffices to show that the

term Inh[0 in (A-15) equals the integral in (A-13). Since IH(ejT) 1Z =

H(e jd') H(e '-J('), we conclude with z = e j( that

jTf In IH(eJ Tldw In f n[H(z)lHll/z) dz

-wO

where the line integral is along the unit circle. But

f I InH(z) dz = 'In H(/z) dz
z z

hence it suffices to show that

1nhO[) InH(z) dz (A-1 6)

From the assumption that H(z) is minimum-phase, it follows that the integrand

in (A-16) is analytic for Izi > 1, hence, the circle of integration can be made

arbitrarily large. And since h [0 =InH(z) as z cc, we conclude that the

integral equals

Inh[0 d_z = ZrTjlnh[0z

and (A-16) results.

Normal processes. If xis a normal r.v. with

f(x) 1 e

then H(x) = -E (Inf(x)) =In UAJ" .

2 2
If v[n3 is normal white noise with E(v [n3 = , then

f(v 1 , -.. V) = f(v 1 ) .. f(v)

hence

H(vIl..., Vr)= -E(In[f(V r...f( rn (A. 17)
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From this and (A-13), it follows that if v[n] is white noise, then

1V = In C (A-18)

Theorem 2. If x[n] is a normal process with power spectrum 5'(w) such that

0
f In (w) dw < oc (A- 19)

-w
0

then its entropy rate H is given by
x

0
Hx :n.I + - J lnS(w)dw (A-Z0)

Proof. Since x[n] is normal, all its statistical properties, including its

entropy rate [see (A-12)], can be expressed in terms of its autocorrelation

R[m. From this it follows that if another process y[n] has the same auto-

correlation R[m', then its entropy rate H will equal H Since S-(w) is an
yx

even, positive function, and it satisfies the discrete form (A-19) of the Paley-

Wiener condition [22], it can be factored into a product E 1z]

S(w) = H(e 1 ) H(e -j') (A-21)

where H(z) is the system function of a real causal minimum phase system.

Using as input to this system a white -noise'normal process with zero mean

and variance one, we obtain as output a normal process s [n] with entropy

rate Csee (A-13) and (A-18))
&0

ITI
H = Inl + Ir fn -Le~)

4w fInIHe' d
0-W O

and (A-20) follows from (A-21).

Maximum entropy with constraints. The solution of problems involving maxi-

mum entropy with constraints in the form of expected values is a simple con-

sequence of the following inequality: If f(x) and g(x) are two arbitrary density
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functions, then
0o 00

-f f(x) Ing(x) dx > - f f(x) lnf(x) dx (A-22)
-00 -00

with equality iff f(x) = g(x). Indeed, as it is easy to see, Iny<l - y and (A-ZZ)

follows readily with y= g(x)/f(x). The above holds also if f(x) and g(x) are re-

placed by joint densities of any order.

Using (A-22), we shall determine the density f (x) of a r.v. x so as to

maximize its entropy H(x) subject to the constraint

00

With
2 2

(x) 1 e -x /2a

it follows from (A-2Z) that

0000 2
-ff(x)Inf(x)dx< - f f(x)(-. z -In a/2ri dx~ +Ina/r2iT

-. 0 -00

The left-side equals H(x) and the right-side is specified, hence, H(x) is maxi-

mum iff f(x) = g(x), that is, if x is normal with zero mean.

We now wish to find the joint density f(x1 , ... , xr) of the r., v. x ., x r

so as to maximize their entropy H(x 1 , ... , xr) subject to the constraints

Exi2xpj p ij i,j = 1, ... , r (A-23)

With

x= (x 1 , .. ,x) x t = . . ... ..

L r J L' 'rs .. A
and
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1 -1
g(x) = e f t

we conclude applying the multidimensional form of (A-22) that f(x) = g(x) and

1-(x) = .1n 11(2 TTeerI A I (A-24)

We similarly conclude that if pij is specified for i = j only, then H(x) is maximum

if the r.v. xi are normal independent with zero-mean and variance

From the above and (A-5) it follows that if xCn3 is a random process with

given average power Etx2 [n]- a 2 , then its entropy rate H X is maximum if

x[.n3 is normal white noise. ,
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Figure Captions

Fig. 1. Forward predictor filter HN~)

SN (n]: predictor of sCn ], e~) N Cm). predictor error.

Fig. 2. Lattice filter.

;N [n]: forward error, 'eN n]: backward error.

Fig. 3. Cascade of AR filter T(z) =I/HN(z) and predictor filter HN(z).
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